
www.manaraa.com

Apertium’s Web Toolchain for
Low-Resource Language Technology

Sushain Cherivirala sushain@skc.name
Independent Scholar, Apertium Community

Shardul Chiplunkar shardul.chiplunkar@gmail.com
Independent Scholar, Apertium Community

Jonathan North Washington jonathan.washington@swarthmore.edu
Linguistics Department, Swarthmore College, Swarthmore, PA 19081 USA

Kevin Brubeck Unhammer unhammer+apertium@mm.st
Trigram AS, Stavanger, Norway

Abstract
The Apertium web toolchain, consisting of a front end (Apertium HTML-Tools) and a
back end (Apertium APy), is a free and open-source toolchain that supports a range of
open-source technologies. The internationalised interface allows users to translate text,
documents, and web pages, as well as morphologically analyse and generate text. Other
features, including support for multi-step/pivot translation, dictionary-style lookup,
spell-checking, and accepting user suggestions for translations, are nearing release.1

1 Introduction

Apertium APy2 (API in Python) was begun in August 2013 as a drop-in replace-
ment written in Python 3 for Apertium’s previous query engine, ScaleMT3, which
was written in Java and was no longer maintained. Apertium HTML-Tools4 was
created later that year as a modern front end that interfaces with APy, replacing
its less interactive predecessor. Both of these free and open-source (FOSS) applic-
ations constitute the Apertium web toolchain and have seen regular development
and increased feature sets since their inception five years ago.

These tools were developed to make the FOSS language technology of Aper-
tium (Forcada et al., 2011) available to a much wider audience than otherwise pos-
sible. Setting up the Apertium tools for use on a desktop operating system is a
barrier to many who wish to use the tools, and their use on the command line can
be cumbersome for tasks like translation, post-editing, and spell-checking.

1We appreciate support of this project by Google Code-In (2013–2017) and Google Summer of Code, and the
time invested by GSoC students Kira Droganova (2016) andMonish Godhia (2017), as well as help from a number
of contributors and translators.

2http://wiki.apertium.org/wiki/Apertium-apy
3http://wiki.apertium.org/wiki/ScaleMT
4http://wiki.apertium.org/wiki/Apertium-html-tools

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 53

http://wiki.apertium.org/wiki/Apertium-apy
http://wiki.apertium.org/wiki/ScaleMT
http://wiki.apertium.org/wiki/Apertium-html-tools

www.manaraa.com

Today, this infrastructure is deployed on the official Apertium website (aper-
tium.org), the website for testing production and development Turkic-language
tools (turkic.apertium.org), an “Apertium beta” site that makes available all of
Apertium’s language pairs regardless of development status (beta.apertium.org),
and Giellatekno Apertium’s translation site (jorgal.uit.no, maintained as a paral-
lel branch). These sites allow anyone in the world with an Internet connection to
make use of Apertium language technology.

APy is also used byWikimedia Content Translation (Mistry et al., 2017), which
facilitates the translation of content between Wikipedia articles in different lan-
guages, and the Sámi-language newspaper Ávvir5, published in Norway, uses
the spell- and grammar-checker back end for editing their publications. Simil-
arly, Softcatalà, a non-profit association dedicated to fighting the marginalisation
of the Catalan language, now employs APy as a translation service (Ivars-Ribes and
Sánchez-Cartagena, 2011). Since the entire platform is FOSS, it is easily deployed
on new systems and modified for specific uses.

This paper presents an overview of the web toolchain’s architecture (§2), de-
scribes its core functionality (§3) and advanced features (§4), discusses on-going
work (§5), summarises usage figures (§6), and concludes with thoughts on future
work (§7).

2 Overview

The toolchain consists of a JavaScript/HTML/CSS front end called HTML-Tools
and a Python 3.3+ back end calledAPy. The applications are type checked by Flow6

and MyPy7, respectively. The front end can function with any back end that sup-
ports the same API as APy; although almost all deployed versions of HTML-Tools
are dependent on APy, it would be straightforward to have HTML-Tools use a cus-
tom back end developed for specific low-resource languages.

The back end can also be used as a generalAPI for other purposes. For example,
the IRC bot begiak8 uses it to provide real-time translations and APy statistics, and
the CAT tool OmegaT9 has a plugin using APy.

HTML-Tools supports translation (ofmultiple text formats) andmorphological
functions in a fully internationalised environment. Currently themajority of the in-
terface is localised in 25 languages. Responsive design makes the interface fluid on
both mobile and desktop devices.

The machine translation (MT) endpoint of the API is, as with the ScaleMT
system, similar to the Google Translate API, so MT consumers may easily switch
between or support both APIs. Other endpoints support other functions, such as
morphological analysis and generation, and provide localisation data to clients.

5https://avvir.no/
6https://flow.org/
7http://mypy-lang.org/
8http://wiki.apertium.org/wiki/Begiak
9https://omegat.org/

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 54

http://apertium.org
http://apertium.org
http://turkic.apertium.org
http://beta.apertium.org
http://jorgal.uit.no
https://avvir.no/
https://flow.org/
http://mypy-lang.org/
http://wiki.apertium.org/wiki/Begiak
https://omegat.org/

www.manaraa.com

3 Core Features

The core feature of the Apertiumweb toolchain is the machine translation interface
in HTML-Tools (Figure 1), which allows the user to choose a source and target lan-
guage to translate their source text. Usersmay also use the language detection func-
tionality powered by CLD210. By allowing immediate access to three recently used
languages, the interface facilitates switching betweenmultiple frequently used lan-
guages.

Figure 1: HTML-Tools’ interface showing machine translation, and tabs for differ-
ent modes. The screenshot also demonstrates localisation (Sardinian, withmissing-
string fallback to Northern Sámi) and a subtitle (“Turkic”).

The toolchain offers a fully internationalised experience with the HTML-Tools’
interface language defaulted to match the user’s browser locale and manually con-
trollable by a language selector. Both right-to-left and left-to-right scripts are sup-
ported. The interface’s string localisations are located in JSON files, one for each
language, that each contain somemetadata and a simple key-value storage schema
with support for basic templating. In addition to the interface’s strings being local-
ised, glossonym localisation is powered by APywhere language names are fetched
from a SQLite database. The database is populated from text files containing data
from SIL International11 and the Unicode Common Locale Data Repository12 as
well as manual curation13. Autoglossonyms (and following that, ISO 639-3 three-
letter codes) are used as fallbacks when a language name is not localised in the
interface’s current language.

In contrast to many modern web applications, HTML-Tools eschews complex
build dependencies and tools such as Webpack, requiring only GNU Make, curl,

10https://github.com/CLD2Owners/cld2
11https://www.sil.org/
12http://cldr.unicode.org/
13These scripts are bundled with APy.

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 55

https://github.com/CLD2Owners/cld2
https://www.sil.org/
http://cldr.unicode.org/

www.manaraa.com

and Python 3 in a standard POSIX environment to successfully build its static re-
sources which can then be served by any web server. Performance optimisations
such as resource compression are entirely optional and offline building and usage
are supported.

APy is modeled after the ScaleMT infrastructure (Sánchez-Cartagena and
Pérez-Ortiz, 2010). Every translation language pair (e.g., Catalan to Spanish)
or monolingual analysis/generation pipeline corresponds to an Apertium mode,
which is a Unix pipeline defined by the Apertium language data developers. Since
pairs involve multiple executables running in serial accessing large binaries, it
would be prohibitively slow to bootstrap a pair on each request, so pipelines are
kept open between requests and flush data upon seeing a NUL character (which is
added at the end of each request).14

The server is typically run in a single Python process using the Tornado lib-
rary15, which uses green threads to allow large numbers of asynchronous/non-
blocking requests. Large requests are split into manageable sizes so they do not
block the server even if other requests to the same mode come in. Like ScaleMT, APy
allows opening several copies of the same mode in case of high traffic, and shutting
down unused ones.

The process handling is general enough that it canmake anyUnix pipeline into
a scalable, robust, non-blocking web service, as long as the pipeline can be made to
flush output on seeing a certain input. The spell- and grammar-checking pipeline
used by Ávvir (which does not use APy’s built-in spelling backend) is one example
of taking a ”new” pipeline and using APy to turn it into a web service.

4 Advanced Features

The toolchain has first-class support for language variants, a feature particularly
relevant to some low-resource languages. Within APy, all endpoints accept lan-
guage codes with variants, e.g. oci_aran represents Aranese, a variety of Occitan.
HTML-Tools provides special rendering to variants, as shown in Figure 2 where
variants are always nested within their ‘parent’ languages to aid discoverability.

In HTML-Tools, all user inputs and selections are persisted in their browser’s
local storage unless disabled, maintaining the interface’s consistency between page
reloads and prevent accidental data loss. By synchronising the browser’s displayed
URL with user inputs, users can share their URL or bookmark it to reach the same
translation.

In addition to text translation, the toolchain supports web page and document
translation. In HTML-Tools, URLs are automatically detected in the source text in-
put and APy handles the fetching and translation of the URL, the result of which
is displayed within a iframe in HTML-Tools. Any links in the web page are instru-
mented to also trigger translation. APY’s document translation endpoint supports
standard text formats including LibreOffice and Microsoft Office.

14A technique pioneered by Wynand Winterbach.
15http://www.tornadoweb.org/en/stable/

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 56

http://www.tornadoweb.org/en/stable/

www.manaraa.com

Figure 2: Possible target languages for a translation from English when multi-step
translation is enabled (see §5.1) on beta.apertium.org.

Aside from the translation mode, HTML-Tools provides other modes visual-
ised as tabs in the interface. Two of these are morphological analysis and gen-
eration. The output of morphological analysis has pretty-printing support, and
morphological generation of surface forms accepts analyses in Apertium stream
format16. Another tab is a sandbox mode that facilitates querying APy with arbit-
rary content, a particularly useful tool for developers. Navigation between modes
is synchronised with the browser’s URL to ensure consistency for reloads and URL
sharing.

HTML-Tools has built-in integration with Matomo (formerly Piwik)17, a free
and open-source web analytics platform, to enable collection of statistics such as
which language pairs are most often used (see §6). In a similar vein, APy supports
not only the logging of usage statistics, but also the collection ofwords in translation
requests that are unknown to Apertium’s translation engine. These words have the
potential to serve as seed data for future initiatives aimed at improving language
pair performance.

To aid in development, the toolchain is currently configured with linters for
JavaScript, HTML, CSS, and Python. These linters and a basic test suite for APy are
run via continuous integration platforms CircleCI18 (HTML-Tools) and Travis CI19
(APy). A Docker20 configuration is provided to enable starting the entire toolchain
with a single command.

16http://wiki.apertium.org/wiki/Apertium_stream_format
17https://matomo.org/
18https://circleci.com/
19https://travis-ci.org/
20https://www.docker.com/

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 57

http://beta.apertium.org
http://wiki.apertium.org/wiki/Apertium_stream_format
https://matomo.org/
https://circleci.com/
https://travis-ci.org/
https://www.docker.com/

www.manaraa.com

5 Ongoing Work

Several features are in progress and have littlework remaining, primarily consisting
of merging changes from various contributors into the toolchain and ensuring that
the features do not interfere with each other.

5.1 Multi-step Translation

Multi-step translation, i.e. translation with one or more intermediate languages, is
supported by APy. An APy request can specify the precise path for translation or
can specify just the ultimate source and target languages and allow APy to select
an appropriate path.

Currently, multi-step translation involves piping the generated text of one pair
into the analyser of another, possibly introducing surface form ambiguity; future
work could improve this by bypassing the intermediate generators and analysers
and directly passing the morphological analysis between language pairs. Also,
when no path is specified, APy chooses a translation path solely by minimising
the number of intermediate languages; future work could improve this by introdu-
cing some numerical measure of the quality of a pair and hence enabling APy to
choose the qualitatively ‘best’ path.

Figure 3: Graphical interface to choose a multi-step translation path from English
to French using Apertium’s released pairs. Blue nodes are intermediate languages
that the user has selected, and green arrows form valid translation paths through
those nodes.

A basic interface for multi-step translation has also already been implemented

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 58

www.manaraa.com

in HTML-Tools21. When enabled, multi-step translation allows the user to select
any target reachable via a multi-step path from the selected source. However, this
approach does not provide any information about or control over the chosen path.
To remedy this, an graphical multi-step interface has been developed in HTML-
Tools (unreleased). Figure 3 shows a typical interface presented to the user upon
selecting English as the source language and French as the ultimate target language.
Further, the nodes in the graph are draggable, and information about the selected
path is also represented elsewhere in the translation interface.

5.2 Dictionary Lookup

Figure 4 illustrates the dictionary lookup feature of the translation interface. When
a translation is requested for a single word, HTML-Tools uses APy’s dictionary
endpoint to fetch all possible translated lemmas along with their part-of-speech.

Figure 4: Dictionary lookup interface showing possible Spanish translations of the
English word ‘leaves’.

This functionality has been implemented on feature branches in APy and
HTML-Tools, but requires further work prior to release. Specifically, the diction-
ary mode could provide reverse translations for additional context, grammatical
information such as the gender of nouns or the conjugation paradigms of verbs,
and information about multi-word lexical units which are currently not handled
by HTML-Tools although APy supports dictionary lookup for any lexical unit.

5.3 Spell-Checking

The spell-checking mode of HTML-Tools allows users to spell-check input text in
languages that support the feature. The interface is separate from the interfaces
for translation, analysis, etc. In APy, spell-checking relies on a speller mode being
enabled in a language module; these modes often use libvoikko22 or hfst-ospell23.

21Enabled, for example, on turkic.apertium.org.
22https://github.com/voikko/corevoikko
23https://github.com/hfst/hfst-ospell

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 59

https://github.com/voikko/corevoikko
https://github.com/hfst/hfst-ospell

www.manaraa.com

Generating a mode from an existing language module is fairly simple, requiring
only installation of the libraries and tools and small additions to the Makefile.

Implementations of spell-checking on the front and back end are still undergo-
ing testing for robustness and usability, with plans to release them soon.

5.4 Suggestions

The suggestions interface allows users to suggest translations of unknown words,
as shown in Figure 5. In APy, support for suggestions is still in development, while
the HTML-Tools interface is developed but needs some refinement before release.

(a) An unknownword is highlighted in the output of a Spanish-English translation, and the interface
provides an opportunity to offer a suggestion.

(b)An interface is provided for offering a suggestion. Context is included in the submitted suggestion.

Figure 5: When suggestions are enabled and an unknown word is encountered,
users can suggest translations of the word that are sent to an APy endpoint.

Another proposed improvement is providing users the ability to rate transla-
tions as ‘thumb up/down’ or on a numerical scale. This requires less effort for the
users and is thus likely to produce more feedback for Apertium, and the numerical
ratings could be used as a measure of quality for pairs produced by human evalu-
ation. Such a qualitative measure would be useful for many Apertium applications
including multi-step translation path selection (§5.1).

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 60

www.manaraa.com

6 Usage Statistics

As discussed in section 4, HTML-Tools supports web analytics via Matomo. In
Table 1 we present some statistics from the apertium.org site to testify to the robust-
ness of the toolchain and show trends in end-user behavior and demographics.

Since April 2014, the site has served 2.1 million visits from 183 distinct coun-
tries around the world. During this period, the associated APy instance received
19.8 million translation requests. Only ~0.5% of the requests were for document or
web page translation, the only other functions exposed on apertium.org.

Table 1 lists the language pairs that have received over one hundred thousand
requests. We note that instant translation is enabled by default and typing into the
source text input continuously will intermittently trigger translation requests.

Language Pair Requests
(thousands)

Characters
(millions)

nob-nno 12,286 62.3% 7,225 16.8%
spa-cat 2,005 10.2% 7,083 16.5%
nno-nob 726 3.7% 758 1.8%
por-spa 693 3.5% 519 1.2%
spa-cat_valencia 672 3.4% 2,344 5.5%
cat-spa 652 3.3% 9,197 21.4%
eng-spa 544 2.8% 5,376 12.5%
spa-por 318 1.6% 679 1.6%
spa-eng 286 1.5% 1,087 2.5%
eng-cat 151 0.8% 990 2.3%
nob-swe 126 0.6% 62 0.1%

Table 1: Translation requests served by apertium.org grouped by language pairs
(using ISO 639-3 codes). Percentages indicate portion of all requests.

7 Conclusion

Perhaps the most important reason why Apertium’s web toolchain is well-suited
for low-resource languages is that the toolchain enables easy public access to lan-
guage technology with very low costs andmaintenance requirements, allowing de-
velopers to spend more funding and time on developing the technology itself. All
the software components required to run an online language service are free and
open source. Further, their disk, memory, and processing requirements are low
enough to work on any personal computer. Once downloaded, even an Internet
connection is not required to use these tools.

As mentioned in §2, HTML-Tools provides a free, open source, and customis-
able interface for custom low-resource language services. The web interface also
allows for sub-sites showcasing tools for low-resource languages. An example of
such a sub-site is turkic.apertium.org for the Turkic languages in Apertium.

Lastly, features described in §5 have the potential to be greatly beneficial
for low-resource languages. Multi-step translation, if used with existing high-

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 61

http://apertium.org
http://turkic.apertium.org/

www.manaraa.com

quality translation pairs, can produce moderate-quality pairs using intermediate
languages with no extra effort, extending the utility and range of possible transla-
tions among low-resource languages. The suggestions interface can make it very
easy for users of low-resource languages and technology to help their developers
improve these tools.

As a free and open-source project, Apertium is driven by its community. We
welcome all suggestions, feedback, and pull requests! The HTML-Tools GitHub
repository24 and the APy GitHub repository25 have their own issue/pull request
trackers, while comments about language data or questions about installation are
welcome on Apertium’s mailing list26 and Freenode IRC channel, #apertium 27.

Beyond technical contributions, we also appreciate help improving HTML-
Tools’ localisation by revising or extending current ones, or adding new ones.

As current usage byApertium and other organisations demonstrates, theAper-
tium web toolchain features a platform that enables end users to quickly benefit
from the efforts of mature language technology. A host of improvements in the
pipeline from spell-checking to dictionary lookup and a steady stream of contrib-
utors signal a promising future.

References

Forcada, M. L. et al. (2011). “Apertium: a free/open-source platform for rule-based
machine translation”. In: Machine Translation 25 (2), pp. 127–144.

Ivars-Ribes, X. and V. M. Sánchez-Cartagena (2011). “A Widely Used Machine
Translation Service and its Migration to a Free/Open-Source Solution : the
Case of Softcatalà”. In: Proceedings of the Second International Workshop on
Free/Open-Source Rule-Based Machine Translation. url: http://hdl.handle.net/
10609/5648.

Mistry, K. et al. (2017). Content translation/Machine Translation/Apertium/Service. url:
https : / / www . mediawiki . org / wiki / Content _ translation / Machine _
Translation/Apertium/Service (visited on 2018-02-10).

Sánchez-Cartagena, V. M. and J. A. Pérez-Ortiz (2010). “ScaleMT: a free/open-
source framework for building scalable machine translation web services”. In:
The Prague Bulletin of Mathematical Linguistics (93), pp. 97–106.

24https://github.com/goavki/apertium-html-tools
25https://github.com/goavki/apertium-apy
26https://lists.sourceforge.net/lists/listinfo/apertium-stuff
27http://wiki.apertium.org/wiki/IRC

Proceedings of AMTA 2018 Workshop: LoResMT 2018 Boston, March 17 - 21, 2018 | Page 62

http://hdl.handle.net/10609/5648
http://hdl.handle.net/10609/5648
https://www.mediawiki.org/wiki/Content_translation/Machine_Translation/Apertium/Service
https://www.mediawiki.org/wiki/Content_translation/Machine_Translation/Apertium/Service
https://github.com/goavki/apertium-html-tools
https://github.com/goavki/apertium-apy
https://lists.sourceforge.net/lists/listinfo/apertium-stuff
http://wiki.apertium.org/wiki/IRC

	proceedingsWkscover_3updated-wide
	WS3a0Introduction
	WS3a1Organizers
	WS3a2Reviewers
	WS3a3Program
	WS3b1InvitedTalk1
	WS3b2InvitedTalk2
	WS3p1
	WS3p2
	WS3p3
	WS3p4
	WS3p5
	Introduction
	Related work
	Proposed approach
	Transformer model
	Initializing transformer with language models
	Gated shallow fusion

	Setup
	Datasets
	Preprocessing
	Default model

	Results
	20k experiments20k parallel train sentences, 1k parallel validation sentences, 300k monolingual corporas
	10k experiments

	Discussion and Conclusion

	WS3p6
	Competition Set-up
	Baseline
	Unsupervised Neural Machine Translation
	UNMT with a dictionary translation zero model
	UNMT with a fully supervised zero model

	Prior Language Pair Information
	Using Execution Time
	Using Failure Status

	Results and Conclusions

	WS3p7
	Introduction
	Overview
	Core Features
	Advanced Features
	Ongoing Work
	Multi-step Translation
	Dictionary Lookup
	Spell-Checking
	Suggestions

	Usage Statistics
	Conclusion

